Nosodes - A Jewel in Homoeopathy : Needs Scientific a Basis of Pharmacological Proving

Pranjal P. Gujarathi^{1,2}, Dr. Rashmi Korat³

¹Ph.D. Research Scholar, Department of Pharmacology, Bhagwan Mahavir Centre for advance research, Surat, Gujarat, India ² Junior Research Fellow, Board of Research in Nuclear Science (BRNS), Radiopharmaceutical division of Bhabha Atomic

Research Centre's project (BARC), Shree Dhanavantary Pharmacy College, Kim Surat, Gujarat, India

³ Department of Pharmacognosy, Bhagwan Mahavir College of Pharmacy, Bhagwan Mahavir University Vesu, Surat, India

Abstract : "Nosodes are homeopathic remedies prepared by source from microbial culture, viruses, fungi, pathological secretions, and excretions of disease individuals. They are used in the treatment of various acute, intercurrent, and chronic diseases in homeopathic practice. All the homeopathic remedies were proven long back by evaluating their effect on healthy individuals and notifying volunteers subjective and objective symptoms. There is a paucity of the available scientific basis for the method of their preparation, standardization, purity, efficacy, and mechanism of action of these remedies Even after advancements in modern technologies, no additional studies have been conducted to prove their all-aforementioned characteristics that limit the acceptance of these remedies in modern science. As per the regulatory requirement, homeopathic remedies are included in the Drug and cosmetic act 1940, therefore it's necessary to produce data on toxicity in laboratory animals as per Schedule Y if anyone needs to introduce a new drug or formulation clinically. The main aim of this review is to compile the essential experimental in vitro and in vivo pharmacological findings of nosodes to trace out available literature, mode of action, and efficacy/toxicity profile to open another area of research for young researchers.

Key Words : Nosodes, Homeopathy, Pharmacology, in vitro, in vivo, Psorinium, Tuberculinum, Carcinocinum.

Received Date : $11/04/2023$ Revised Date : $04/05/2023$ Acceptance Date : $29/05/$	2023
---	------

1. Introduction

Nosodes are broad-spectrum, widely used, potentized isopathic preparations that homeopaths use in regular clinical practice to treat various diseases [1,2]. All the nosodes are prepared by homeopathic standards of drug preparation. In the homeopathic system of medicine, remedies are prepared by a process termed potentization or dynamization. The process of potentization or dynamization helps the crud drug material open to potential nanoparticles and relatively nullify the toxic effect of the crud drug[2]. Isopathy is an the approach in homeopathy that used nosodes in the treatment of acute and chronic diseases. In isopathy, the remedies are prepared from the the same material that is capable of producing a disease condition using the potentization process.

In homeopathic practice, nosodes are an essential part. They are frequently used by homeopaths as common, intercurrent, chronic, and acute remedies depending on the background knowledge, experience, and expertise of prescribing physician [3]. The first nosode was prepared by Dr. Hering in 1830. Between 1875 to 1925, most of the other nosodes were prepared [4]. Lack of availability of advanced and sophisticated limits the standardization process of nosodes concerning their safety, efficacy, characterization, purity, and microbial count. In 1901 Homoeopathic Pharmacopeia of the United States established guidelines for the preparation of nosode. The commonly used major nosodes like Psorinium, Medorrhinum, Symphilinum, Tuberculinum, pyrogenic, carcinocinum, and variolinum are developed before 1901. After that none of this, these nosodes were remade by using guidelines[2]. Even a paucity of literature available on the method of preparation, proving, standardization, purity, and efficacy limit the acceptance of nosode in modern science. All homeopathic medicines including nosodes are based on the principle of "Similia, similibus, curentur" which means the "like cure by like" concept introduced by Dr. Samuel Hahnemn is a 'founder of homeopathy [1]. Several homeopathic remedies are being used clinically for decreasing the severity, complete elimination of disease state, and prevention starting from a simple cough or cold to major diseases like cancer, asthma, autoimmune diseases, rheumatic disorders, and metabolic diseases. These remedies are prescribed by homeopaths who understand the subjective and objective symptoms of a patient [3]. All the available homeopathic remedies were proved by direct administration of prepared remedies to healthy volunteers and notifying the subjective and objective symptoms, while the efficacy of medicine was proved by administrating them, disease individuals. In the current scenario, the basic requirement to introduce any new drug or formulation clinically before scientific proofs of preclinical toxicology studies, therapeutic efficacy, mode of action, and a metabolic pathway is the utmost requirement. As per the Indian regulatory requirement, homeopathic remedies are also included in the Drug and Cosmetic Act of 1940[5]. Therefore, it becomes compulsory to produce data on each drug for its therapeutic/toxic effect in laboratory animals as per Schedule Y[6]. However, to establish the the scientific basis for efficacy and mode of action of nosodes it is crucial to prove them using a series of invitro as well as invivo preclinical models in pharmacology. After the advancement in scientific knowledge in the field of in-vitro and in vivo pharmacology, and molecular biology many Indian and foreign scientists are researching the unproven part of homeopathic medicine. But the number of scientists working proving of homeopathic remedies from a pharmacological perspective is less as compared to a scientist working on modern medicine.

The main objective of this review is to compile the important experimental in vitro and in vivo pharmacological findings of nosodes to trace out their available literature, mechanism of action, and efficacy/ toxicity profile as well as to open a new area of research for researchers.

2. Materials and methods

Nosodes are the homeopathic remedies sourced from diseased pathological secretions or excretions, a clinical sample of microbes including bacteria, fungi, and viruses or parasites diseased tissues (cancerous tissue), or decomposition product of humans and animals [1,2,7].

2.1. Definition

The term nosode is related to the Greek prefix "noso" means disease, therefore the prefix noso is added to the word which has a characteristic relation with the disease. The term nosode is also connected to the Latin word "noxa" which means damage indicating the use of noxious Step 2 : material as a source of remedy[3,7]. the disease subject is used for the preparation of nosode. The homeopathy pharmacopeia of India (HPI) had given a limit for recommended the microbial count is 20 billion CFU. Nature of material : The homeopathy Pharmacopoeia of India divided the nosode into four categories

2.2. Classification of nosodes

The nosodes are divided into four groups depending on the source material used in their preparation[1,8]

- N-I- Preparations made from bacterial endotoxin
- N-II- Preparation obtained from microorganisms having the ability to produce exotoxins
- N-III-Preparations sourced from purified toxins
- N-IV- Preparations obtained from a a microorganism or diseased subjects. Based on their sphere of action and clinical use, they are classified as [9] :
- Basic nosodes- Psorinum, Tuberculinum- Bacillinum, Syphilinum, Medorrhenium, and Carcinosin
- Exanthem nosodes-Morbillinum, Parotidinum, BVAccinium, Pertussin, Anthacenum, Variolinum etc.
- Isopathic nosodes- Sterptococcin, Malaria Officinalis, etc.
- Intestinal nosodes Batch nosodes B.Morgan, Morgan pure, Morgan gaetner, Dysntery co., B. proteus, Baccillus No. 7, etc.
- Autogenous nosodes- Prepared from secretions and discharges from the pathological tissue or organ of the patient himself for threatening disease condition (Tautophathy)

Vol 1 Issue 1 2023 (Jan - June 2023)

- Lesser used Ambra grisea, cholera toxin 90, Secale cor, Eosinophillinum, Histamine, Typhiodinum, etc.
- The Oscillococcinum and HIV nosode were newly added nosodes prepared from newer microorganisms like leprosy Human immunodeficiency nosode.

2.3. Method of preparation of nosodes

Homeopathic remedies are prepared by a series of systemic dilutions of starting material and a succession (a forceful shaking) that leads to minimization, relatively nullifying the toxic effect of crude drug substances and increasing their curative property. The below-mentioned steps are involved in the preparation of nosodes :

- Step 1 : Identification, authentication, and procurement of source material : It is of prime importance to identify, authenticate and document the starting material. The standard test must be used to confirm the exact microorganism. The microorganisms and biological material is procured from various commercial and noncommercial sources. Most commonly latest virulent or standard microorganism strains are used, when microbial culture is not available fresh clinical samples or biological material of the disease subject is used for the preparation of nosode. The homeopathy pharmacopeia of India (HPI) had given a limit for recommended the microbial count is 20 billion CFU.
 - p 2 : **Nature of material :** The homeopathy Pharmacopoeia of India divided the nosode into four categories depending on the nature of the source material and whether the organism used in the preparation of nosode can produce endotoxins, exotoxins, viruses, or clinical material (Sputum, Urine, Blood, Secretions, and Excretions) from disease subject.
 - N -I Remedies prepared by using lysates of microorganisms that can produce bacterial endotoxins e.g. Salmonella Typhimurium, Escherichia Coli, and Staphylococcus
 - N-I Nosodes made from the source microorganisms capable of producing exotoxin, e.g. Corynebacterium diphtheriae.
 - N − III − Remedies prepared using purified toxins
 - N-IV Preparation made from the clinical material/microorganisms/viruses of the disease subject e.g. Variolinum, Influenzinum, Psorinum, Syphilinum, HIV nosode, Hepatitic C nosode.
- Step 3 : Removal of common co-infection / contamination This process is done to ensure the purity of the preparation. The process involves the elimination of all possible contaminants from the source material. This step is only followed for the source material taken from a clinical sample of a diseased subject, if the source material is pure culture this step is not required.

- Step 4 : Removal/ separation of other components Depending on the nature of starting material removal/separation of another the component is carried out using filtration, centrifugation, scraping, etc. E.g. If the starting material for the preparation of nosode is serum, then expression, centrifugation, and/or filtration of serum sample is carried out to obtain the pure organism. The cell debris and unknown bacteria from the blood sample (if the source material) is removed by the process of centrifugation and filtration. For filtration generally, Seitz filters are used. To isolate the pure parasite sourced from parasite-infected animal-human tissue the skin of the infected the subject is used to scrap the source material. Then these Step 9: Safety checking for human use The safety of scrappings are boiled with potassium hydroxide solution using water as a medium.
- Step 5 : Characterization of source material In this step, the source material is characterized concerning its Step 10 : Lyophilization This process is performed for fu-
- Step 6 : **Safety** The handling of the source material is carried out in a strict biosafety compliment an environment with the least handling using sealed containers and disposable auto-tip puppets.
- Step 7 : **Preparation of mother tincture** This step is the defined quantity of pure culture of one strain or mixed strain used in the preparation of nosode. The alcohol, a mixture of alcohol in water and water for injection are used as a vehicle for the preparation of the mother tincture. For source materials that are soluble in alcohol mother tincture is prepared by mixing equal parts by weight of drug material and alcohol or sometimes alcohol: water (9:1) ratio and the mixture is succussed. The source material that is insoluble in alcohol is prepared by means Hahnemann method of trituration. In this method, the starting material is triturated with solid vehicle lactose in a 1 :10 ratio. Afterward, this solid mixture is converted into liquid potency and the process of succussion and potentization are performed. The the mother tincture is denoted by Symbol 'Q'.
- Step 8 : Dynamization of potencies The process of serial succession and dilution is referred to as dynamization or potentization. "1C" potency is prepared by mixing one part of the mother tincture in 99 parts of alcohol or a mixture of water and alcohol. Further, the obtained liquid is succussed 10 times in a bottle

by firmly hitting the base of the bottom of a leathercovered book. This mixture has a dilution ratio of 1:100 (1C). One part of 1c potency is again diluted and, succussed in 99 parts of alcohol or water and the water mixture produces 2C potency. This process is further repeated to produce desired potencies.

Scale	Dilutionrate	Notation
Decimal	1:10	X, D, DH
Centesimal	1:100	C, CH, CK
Millesimal	1:1000	М
50 Millesimal	1:50,000	LM

- nosodes is confirmed by performing sterility testing mentioned in the Indian Pharmacopoeia and European pharmacopeia for aerobic and anaerobic bacteria.
- ture use of the original stock solution for preparing nodoses.

3. Conclusion :

Conclusively no proper scientific explanation has been provided to date about the mechanism of action and efficacy of nosode, available studies only put some light on the acceptance of the health claim of nosodes scientifically. So the preclinical study of the nosode is required to prove efficacy and mechanistic. The preclinical pharmacological study not only provides information on the efficacy and possible mechanist approach of drug action of homeopathic nosodes but also serves as scientific proof or justification for the clinical use of these remedies as well as supports a homeopathic system of medicine scientifically in the scientific fraternity in a more satisfactory way. A homeopathic system of medicine has tremendous scope in preclinical pharmacology to prove its efficacy, mode of action using invitro and/or in vivo study models, and also from standardization, method preparation point of view of nosodes using modern tools, and available technology.

4. Acknowledgement

The authors are thankful to Prof. Dr. Piyush S. Gujarathi (M.D., Homoeopath) for help in understanding the basic concepts of homeopathy.

Name of No-	Source material [22-27]	Uses [22-27]	Preclinical experimental studies	References
sode $[22-27]$				nererences
Psorinum	Sero-purulent matter	Allergy, asthma,	The therapeutic evaluation of	10,11
(Queen of	(containing mite Sar-	bronchitis, cold,	psorinum 30CH in combination	,
Antipsorics)	coptes scabiei) in a	depression, der-	with other homeopathic reme-	
- /	scabietic the vesicle of	matitis, eczema,	dies was conducted in 16 dogs af-	
	infected skin	acne, headache,	fected with canine oral papillo-	
	Epidermoid efflorescence	insomnia, mild ear	matosis. The result finding sho-	
	of pityriasis	infection, psoriasis	wed early recovery and a signifi-	
	The salt forms the pro-		cant decrease in the oral lesion	
	duct of psora		in the group treated with the	
			homeopathic combination com-	
			pared to the placebo- treated	
			group. The cell viability assay	
			of Psorinum 6X was performed	
			using anticancer cell lines A549,	
			HepG2, and MCF07 using MTT	
			assay. Psorinum 6X inhibited cell	
			proliferation at 24 hours and ar-	
			rested the cell cycle at the sub-	
			G 1 stage of the A549 cell. It	
			was found that psorinum 6X pro-	
			motes apoptosis of A549 cells by	
			up-and-down-regulation of p53,	
			caspase-3, Bax, and Bcl-2.	
Tuberculinum	From the sputum of a tu-	Respiratory tract	Preparation, standardization,	12
	bercular patient	ailments tonsilitis,	and in vitro safety testing of	
	Made from sterilized My-	bronchitis, cold,	polyvalent (multistrain) and uni-	
	cobacterium tuberculosis	hay fever	valent Mycobacterium nosodes	
	culture		was carried out by Suvarna Joshi	
	Pus with bacilli are remo-		et. al prepared nosode did not	
	ved from tubercular abs-		show growth of mycobacterium	
	cess patient		above the 5C potency, 30C	
			from any appropriate and DNA	
			motorial in in vitro studios	
			indicating safe use and handling	
			of Univelent and polyvelent	
			nosode	
Syphilimum	Prepared from syphilitic	Sciatica eve in-		7
(Leutinum)	discharge containing Tre-	flammation. mouth		
(ponema pallidum spiro-	and skin sores.		
	chaete bacterium from the	Rheumatic pain.		
	primary chancre	chronic skin erup-		
		tion		
Medorrhinum	Prepared from the puru-	Suppressed gonor-	Medorrhenium was evaluated	13
(Glinicum)	lent discharge of a blen-	rhoeae, Chronic	using FCA induced rheumatoid	
	norrhagic patient having	urethritis, eczema	arthritis model in rats. Medor-	
	gonorrhea, the discharge	of buttocks in baby,	rhenium significantly decreases	
	contains Neisseria gonor-	gonorrhoeae	the serum TNF- α level, expres-	
	rhoeae cocci		sion of II- 1β , Il 6 level, and	
			expression of NF- KB compared	
			to the CFA control group. This	
			study's finding revealed that me-	
			dorrhenium ameliorates rheuma-	
			toid arthritis in experimental	
			animals.	

Name of No	Source motorial [22.27]	Ugog [99-97]	Proglinical experimental studies	Poforoncog
sode $[22-27]$	Source material [22-27]	\cup ses $[22-27]$	r recimical experimental studies	neierences
Carcinocin	Biopsy tissue of adeno-	Lung, Breast, liver.	Carcinocin 200CH was used	14-17
	carcinoma of the urinary	intestine. urinary	in the treatment of p-	
	bladder, biopsy tissue of	bladder cancer.	Dimethylamineoazoenzene-	
	adenocarcinoma of the in-	abscess, acne,	induced liver cancer in experi-	
	testine, biopsy tissue of	asthma, bronchitis,	mental animals, study findings	
	Scirrhous Carcinoma of	chronic fatigue	showed that carcinocine shows	
	the breast, biopsy tissue	syndrome, colitis,	amelioration hepatocarcinoma	
	of squamous carcinoma of	diabetes, dysme-	in mice. Carcinocin 1000C was	
	the lung	norrhea, insomnia,	evaluated for its anticancer	
		moles, ovarian	potential against prostate and	
		cysts, rectal pro-	breast cancer using DU-145,	
		lapse, Sinusitis,	LNCaP, MAT- Lylu, and MDA-	
		premenstrual syn-	MB-231 cells by measuring cell	
		drome	growth and gene expression	
			(Bax, bcl-3, bcl-x, caspase-1,	
			caspase-2, caspase-3, Fas) by	
			MTT assay and multiprobe	
			ribonuclease protection assay.	
			In this study, the carcinogen	
			did not show an accountable	
			effect on cell growth and gene	
			expression in vitro studies.	
			Carcinocin 30C was tested for	
			attentopotacin induced hate coll	
			dusfunction in miss and in vitro	
			using a culture of islate colle	
			to evaluate the the functioning	
			ability of islets.	
Diptherinum	Serum consisting of live	Prophylactic and		7
_	attenuated Diptherium	curative of diph-		
	bacilli	theria, chronic		
	Diphtheritic membrane	tonsillitis, epistaxis		
	sourced from a throat			
	swab of a patient suffering			
	from diphtheria		D	10
Pyrogenum	Decomposed lean beet, for	Septic tever, ty-	Pyrogenium 200Ch and 1000Ch	18
(Artificial	2 weeks beef allowed to	phoid, conditions	were evaluated for their antipy-	
sepsin)	stand in the sun and then	associated with	retic activity using Baker's yeast	
	potentized.	poisoning, onensive	toncios purpopulation significantly	
		tions of the body	reduced force in treated reliability	
		tions of the body	compared to the negative control	
			group	
Staphyllococ	Endotoxine of Stanhalo	Acidity toothacho	Staphallococcinum 30C 200C	19
cinum	coccinum aureus	ache anviae ar-	and 1M dilution showed antibac-	15
		thritis dermatitis	terial activity against Stanhylo-	
		fever. headache	coccus aureus. Compare to 30C	
		urinary tract infec-	and 1M dilution 200C dilution	
		tion	of staphalococcinum showed the	
			best antibacterial potential.	

				D
Name of No- sode [22-27]	Source material [22-27]	Uses [22-27]	Preclinical experimental studies	References
Hydrophobi	The saliva of a Rabid dog	Corns, Diarrhea,	-	7
num		dysentery, Leu-		
(Lyssin)		paralysis neural-		
		gia, hydrophobia		
Anthracinum	The spleen of cattle affec-	Septic inflamma-	-	7
(Anthrax	ted by anthrax	tion, malignant		
poison)		pain		
Influenzinum	A nasal smear of a pa-	Flue like symptoms	-	7
	tient having influenza and			
	containing the virus of Or-			
Malaria Offi-	A peat or decayed vege-	Cough, diarrhea.	In vitro antimalarial activity of	20.21
cinalis	table matter, taken from a	vertigo, nausea,	malaria officinalis was observed	
	marsh during dry weather	malaria, liver infec-	using a β -hematin formation as-	
		tion, neuralgia	say. The results of this study sho	
			in the drug- the treated group is	
			greater than in the chloroquine-	
			treated group of animals. 30C	
			and 200C potencies were utilized	
			ticidal activity in mice using Pe-	
			ter's 4-day test for Plasmodium	
			berghei. 30C potency of nosode	
			shows considerable antiplasmo-	
			compared to 200 C potency.	
Ambra gri-	Belly of the sperm whale-	Abdominal pain,		7
siea	physic/macrocephalus	weakness, hearing		
		loss, convulsion		
		11/1		
	Treatment of	wnen	Intercurrent	
	chronic cases	complaints due	remedies	
		to acute illness		
		Complimentar	A secodo	
	Prophylactic	complimentary	y A second	
		Tenledy	prescription	
		Closing the		
		treatment of		
		chronic disease	2	

Figure 1 – Distribution of student nurses with regard to their residence.

5. References

- 1. Sankar K, Jadhav AP. No
sodes and Sarcodes. $2017\,;16(1):\!158\text{-}163$
- Shah R. Scientific method of preparing homeopathic nosodes. Indian Journal of Research in Homoeopathy 2014;8(3) :166-173
- Arora B. Use of Nosodes in Homeopathic Clinical Practice : A Survey [Homepage on the Internet]. 2015;8-13
- 4. HOMOEOPATHIC PHARMACOPOEIA OF IN-DIA Preface to E-book Combined Volume-I st to IX th (Revised & Augmented). Govt. of India, Ministry of Health and family welfare dept. of Ayurveda,Yoga, & Naturopathy, Unani, Siddha and Homoeopathy 2016; 1-1342
- Government Of India Ministry Of Health And Family Welfare (Department Of Health) The Drugs And Cosmetics Act And Rules The Drugs And Cosmetics Act, 1940 (23 Of 1940) The Drugs And Cosmetics Rules, 1945 List Of Abbrevia- Tions Used
- 6. Schedule Y(ammended version) CDSCO. 2014; 1 -48
- 7. Ali M. A Study of Nosodes & Sarcodes in Homoeopathy [Homepage on the Internet]. Available from : www.similima.com 1-42
- Nayak D, Varanasi R. Homoeopathic nosodes, a neglected approach for epidemics : A critical review. Indian Journal of Research in Homoeopathy. 2020;14(2):129–135.
- 9. Galande DrTB. Nosodes and Their Indications in Homoeopathy. International Journal of Advanced Research in Science, Communication and Technology 2021;176–181.
- 10. Mondal J, Samadder A, Khuda-Bukhsh AR. Psorinum $6 \times$ triggers apoptosis signals in human lung cancer cells. J Integr Med 2016;14(2):143–153.
- 11. Raj PAA, Pavulraj S, Kumar MA, Sangeetha S, Shanmugapriya R, Sabithabanu S. Therapeutic eva-

luation of homeopathic treatment for canine oral papillomatosis. Vet World 2020; 13(1): 206-213.

- 12. Joshi S, Mukerjee S, Vaidya S, Talele G, Chowdhary A, Shah R. Preparation, standardization and in vitro safety testing of Mycobacterium no-sodes (Emtact- polyvalent nosode). Homeopathy 2016;105(3):225–232.
- 13. Singh S, Karwasra R, Nayak D, Kumar Khurana A, Manchanda RK. Amelioration of experimental rheumatoid arthritis by selected ultra-diluted preparations by down-regulating increased expression of TNF- α & IL-6. 2021;20(4): 956-964
- 14. Thangapazham RL, Gaddipati JP, Rajeshkumar N V., et al. Homeopathic medicines do not alter growth and gene expression in prostate and breast cancer cells in vitro. Integr Cancer Ther 2006;5(4):356–361.
- 15. Dandanayakula R, Kotikalapudi N, Gouri VG, Pothani S, Venkatesan V, Venkate-San V. CARCI-NOSIN 30 C PROTECTS ISLETS AGAINST STZ INDUCED BETA CELL DYSFUNCTIONS. World Journal of Pharmaceutical Research World Journal of Pharmaceutical Research SJIF Impact Factor 5 [homepage on the Internet] 2016;01(01):753-768.
- 16. Jyoti Biswas S, Pathak S, Bhattacharjee N, Kumar Das J, Rahman Khuda-bukhsh A. Efficacy of the Potentized Homeopathic Drug, Carcinosin 200, Fed Alone and in Combination with Another Drug, Chelidonium 200, in Amelioration of p-Dimethylaminoazobenzene-Induced Hepatocarcinogenesis in Mice. 2005;11(5):839-854
- 17. Kindelmann G. Ultra-high dilutions of homeopathic remedies alter cell viability and induce apoptosis in the MCF-7 human-cancer-cell-line in an in vitro environment. Homeopathy 2016;105(1):31.
- Ahmad S, Abbasi WM, Rehman T. Evaluation of antipyretic activity of Belladonna and Pyrogenium ultrahigh dilutions in induced fever model : Antipyretic effects of Belladonna and Pyrogenium. J Complement Integr Med 2019;16(1);1-6